If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15=-16t^2+48t+3
We move all terms to the left:
15-(-16t^2+48t+3)=0
We get rid of parentheses
16t^2-48t-3+15=0
We add all the numbers together, and all the variables
16t^2-48t+12=0
a = 16; b = -48; c = +12;
Δ = b2-4ac
Δ = -482-4·16·12
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-16\sqrt{6}}{2*16}=\frac{48-16\sqrt{6}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+16\sqrt{6}}{2*16}=\frac{48+16\sqrt{6}}{32} $
| 3z-14=10z | | 100-10y+45y=180 | | -6(2-g=g | | -6-2v=v | | -2/3c-9/5=14c+3/10 | | 2(2x+3)-7x=23-5 | | 4.60x=5.2 | | -3=2x+15 | | (w–30)+(w–50)+66=180 | | -4(5+12b)=b | | w–30+w–50+66=180 | | -4(7s+8)=s | | -4(7+g)=g | | 2v+(2v–19)+59=180 | | 0.6x=2400 | | (2t–50)+(2t–48)+30=180 | | 9w-4=95 | | (W+1)(4w+3)=5 | | 9w-4=96 | | -4(11+12v)=v | | (11c+10)+13c+10c=180 | | 15x+21=84 | | 2+5w=77 | | 18y-12=14 | | -2(11+4a)=a | | -8+x/3=12 | | (14x+4)+(1+15x)=180 | | (2u-11)+(u-9)+2u=180 | | 3(4-5t)=t | | 1=9n-2(5+3n) | | (2u–11)+(u–9)+2u=180 | | 26=+10-3g |